Engineering a photoactivatable A-to-I RNA base editor for gene therapy in vivo – Nature Biotechnology

May Be Interested In:Bella Ramsey On Working With Pedro Pascal, Dina And Ellie, And More While Playing With Puppies


  • Doudna, J. A. The promise and challenge of therapeutic genome editing. Nature 578, 229–236 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pacesa, M., Pelea, O. & Jinek, M. Past, present, and future of CRISPR genome editing technologies. Cell 187, 1076–1100 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhong, G. et al. A reversible RNA on-switch that controls gene expression of AAV-delivered therapeutics in vivo. Nat. Biotechnol. 38, 169–175 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Monteys, A. M. et al. Regulated control of gene therapies by drug-induced splicing. Nature 596, 291–295 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, R. et al. Optogenetic control of RNA function and metabolism using engineered light-switchable RNA-binding proteins. Nat. Biotechnol. 40, 779–786 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Pfeiffer, L. S. & Stafforst, T. Precision RNA base editing with engineered and endogenous effectors. Nat. Biotechnol. 41, 1526–1542 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Booth, B. J. et al. RNA editing: expanding the potential of RNA therapeutics. Mol. Ther. 31, 1533–1549 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Song, J., Zhuang, Y. & Yi, C. Programmable RNA base editing via targeted modifications. Nat. Chem. Biol. 20, 277–290 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Merkle, T. et al. Precise RNA editing by recruiting endogenous ADARs with antisense oligonucleotides. Nat. Biotechnol. 37, 133–138 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Qu, L. et al. Programmable RNA editing by recruiting endogenous ADAR using engineered RNAs. Nat. Biotechnol. 37, 1059–1069 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Reautschnig, P. et al. CLUSTER guide RNAs enable precise and efficient RNA editing with endogenous ADAR enzymes in vivo. Nat. Biotechnol. 40, 759–768 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Katrekar, D. et al. Efficient in vitro and in vivo RNA editing via recruitment of endogenous ADARs using circular guide RNAs. Nat. Biotechnol. 40, 938–945 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vogel, P. et al. Efficient and precise editing of endogenous transcripts with SNAP-tagged ADARs. Nat. Methods 15, 535–538 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Montiel-Gonzalez, M. F., Vallecillo-Viejo, I., Yudowski, G. A. & Rosenthal, J. J. C. Correction of mutations within the cystic fibrosis transmembrane conductance regulator by site-directed RNA editing. Proc. Natl Acad. Sci. USA 110, 18285–18290 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Han, W. et al. Programmable RNA base editing with a single gRNA-free enzyme. Nucleic Acids Res. 50, 9580–9595 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cox, D. B. T. et al. RNA editing with CRISPR-Cas13. Science 358, 1019–1027 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kannan, S. et al. Compact RNA editors with small Cas13 proteins. Nat. Biotechnol. 40, 194–197 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xu, C. et al. Programmable RNA editing with compact CRISPR–Cas13 systems from uncultivated microbes. Nat. Methods 18, 499–506 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rauch, S. et al. Programmable RNA-guided RNA effector proteins built from human parts. Cell 178, 122–134.e12 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rauch, S., Jones, K. A. & Dickinson, B. C. Small molecule-inducible RNA-targeting systems for temporal control of RNA regulation. ACS Cent. Sci. 6, 1987–1996 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stroppel, A. S., Lappalainen, R. & Stafforst, T. Controlling site-directed RNA editing by chemically induced dimerization. Chemistry 27, 12300–12304 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, Y. et al. Light-triggered site-directed RNA editing by endogenous ADAR1 with photolabile guide RNA. Cell Chem. Biol. 30, 672–682.e5 (2023).

    Article 
    CAS 

    Google Scholar 

  • Hanswillemenke, A., Kuzdere, T., Vogel, P., Jékely, G. & Stafforst, T. Site-directed RNA editing in vivo can be triggered by the light-driven assembly of an artificial riboprotein. J. Am. Chem. Soc. 137, 15875–15881 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bennett, C. F., Baker, B. F., Pham, N., Swayze, E. & Geary, R. S. Pharmacology of antisense drugs. Annu. Rev. Pharmacol. Toxicol. 57, 81–105 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yu, J. et al. Programmable RNA base editing with photoactivatable CRISPR-Cas13. Nat. Commun. 15, 673 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kawano, F., Suzuki, H., Furuya, A. & Sato, M. Engineered pairs of distinct photoswitches for optogenetic control of cellular proteins. Nat. Commun. 6, 6256 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Katrekar, D. et al. Comprehensive interrogation of the ADAR2 deaminase domain for engineering enhanced RNA editing activity and specificity. Elife 11, 1–19 (2022).

    Article 

    Google Scholar 

  • Wong, S. K., Sato, S. & Lazinski, D. W. Substrate recognition by ADAR1 and ADAR2. RNA 7, 846–858 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Konermann, S. et al. Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors. Cell 173, 665–676.e14 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Paulmurugan, R. & Gambhir, S. S. Combinatorial library screening for developing an improved split-firefly luciferase fragment-assisted complementation system for studying protein–protein interactions. Anal. Chem. 79, 2346–2353 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, H. et al. Efficient photoactivatable Dre recombinase for cell type-specific spatiotemporal control of genome engineering in the mouse. Proc. Natl Acad. Sci. USA 117, 33426–33435 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, H. et al. Stable transgenic mouse strain with enhanced photoactivatable Cre recombinase for spatiotemporal genome manipulation. Adv. Sci. 9, 1–12 (2022).

    Article 
    CAS 

    Google Scholar 

  • Kuttan, A. & Bass, B. L. Mechanistic insights into editing-site specificity of ADARs. Proc. Natl Acad. Sci. USA 109, E3295–E3304 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, X. et al. Develop a compact RNA base editor by fusing ADAR with engineered EcCas6e. Adv. Sci. 10, 1–8 (2023).

    Google Scholar 

  • Benedetti, L. et al. Optimized vivid-derived magnets photodimerizers for subcellular optogenetics in mammalian cells. Elife 9, 1–49 (2020).

    Article 

    Google Scholar 

  • Martins-Dias, P. & Romão, L. Nonsense suppression therapies in human genetic diseases. Cell. Mol. Life Sci. 78, 4677–4701 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Luo, N. et al. Near-cognate tRNAs increase the efficiency and precision of pseudouridine-mediated readthrough of premature termination codons. Nat. Biotechnol. 43, 114–123 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Albers, S. et al. Engineered tRNAs suppress nonsense mutations in cells and in vivo. Nature 618, 842–848 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yi, Z. et al. Engineered circular ADAR-recruiting RNAs increase the efficiency and fidelity of RNA editing in vitro and in vivo. Nat. Biotechnol. 40, 946–955 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • MacDonald, B. T., Tamai, K. & He, X. Wnt/β-catenin signaling: components, mechanisms, and diseases. Dev. Cell 17, 9–26 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, C. et al. Control of β-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 108, 837–847 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kay, M. A., He, C.-Y. & Chen, Z.-Y. A robust system for production of minicircle DNA vectors. Nat. Biotechnol. 28, 1287–1289 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lamb, Y. N. & Hoy, S. M. Eftrenonacog alfa: a review in haemophilia B. Drugs 83, 807–818 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nathwani, A. C. et al. Long-term safety and efficacy of factor IX gene therapy in hemophilia B. N. Engl. J. Med. 371, 1994–2004 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • George, L. A. et al. Hemophilia B gene therapy with a high-specific-activity factor IX variant. N. Engl. J. Med. 377, 2215–2227 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kaczmarek, R. & Herzog, R. W. Treatment-induced hemophilic thrombosis? Mol. Ther. 30, 505–506 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Simioni, P. et al. X-linked thrombophilia with a mutant factor IX (factor IX Padua). N. Engl. J. Med. 361, 1671–1675 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Guan, Y. et al. CRISPR/Cas9‐mediated somatic correction of a novel coagulator factor IX gene mutation ameliorates hemophilia in mouse. EMBO Mol. Med. 8, 477–488 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Anadón, C. et al. Gene amplification-associated overexpression of the RNA editing enzyme ADAR1 enhances human lung tumorigenesis. Oncogene 35, 4407–4413 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Teoh, P. J. et al. Aberrant hyperediting of the myeloma transcriptome by ADAR1 confers oncogenicity and is a marker of poor prognosis. Blood 132, 1304–1317 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nguyen, N. T. et al. Nano-optogenetic engineering of CAR T cells for precision immunotherapy with enhanced safety. Nat. Nanotechnol. 16, 1424–1434 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, Z. et al. Engineering light-controllable CAR T cells for cancer immunotherapy. Sci. Adv. 6, 1–14 (2020).

    Article 

    Google Scholar 

  • Bansal, A., Shikha, S. & Zhang, Y. Towards translational optogenetics. Nat. Biomed. Eng. 7, 349–369 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Zhou, Y. et al. A small and highly sensitive red/far-red optogenetic switch for applications in mammals. Nat. Biotechnol. 40, 262–272 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kuwasaki, Y. et al. A red light-responsive photoswitch for deep tissue optogenetics. Nat. Biotechnol. 40, 1672–1679 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bonger, K. M., Chen, L., Liu, C. W. & Wandless, T. J. Small-molecule displacement of a cryptic degron causes conditional protein degradation. Nat. Chem. Biol. 7, 531–537 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hwang, G.-H. et al. Web-based design and analysis tools for CRISPR base editing. BMC Bioinformatics 19, 542 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, H. et al. Engineering a photoactivatable A-to-I RNA base editor for gene therapy in vivo. NCBI SRA https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1194220 (2025).

  • Li, H. et al. Engineering a photoactivatable A-to-I RNA base editor for gene therapy in vivo. NCBI SRA https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1194292 (2025).

  • Li, H. et al. Engineering a photoactivatable A-to-I RNA base editor for gene therapy in vivo. NCBI SRA https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1197542 (2025).

  • Li, H. et al. Engineering a photoactivatable A-to-I RNA base editor for gene therapy in vivo. NCBI SRA https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1207784 (2025).

  • Li, H. et al. Engineering a photoactivatable A-to-I RNA base editor for gene therapy in vivo. NCBI SRA https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1194549 (2025).

  • Li, H. et al. Engineering a photoactivatable A-to-I RNA base editor for gene therapy in vivo. NCBI SRA https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1207789 (2025).

  • share Share facebook pinterest whatsapp x print

    Similar Content

    Ancient jawbone found in sea belongs to mysterious human ancestors, scientists say
    Ancient jawbone found in sea belongs to mysterious human ancestors, scientists say
    What Americans Think Of The Biden Impeachment Inquiry
    What Americans Think Of The Biden Impeachment Inquiry
    Pope Francis to make first public appearance since hospitalization
    Pope Francis to make first public appearance since hospitalization
    University High Knows the Answers at NASA JPL Regional Science Bowl – NASA
    Wink Martindale, host of game shows
    Wink Martindale, host of game shows
    Ultimate Record Collection: The Beatles, 1965-1970
    Ultimate Record Collection: The Beatles, 1965-1970

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    On the Move: News that’s Changing the World | © 2025 | Daily News